stat¶
Parameters¶
Parameter label |
I/O type |
Data type |
Mandatory parameter? |
Default value |
|---|---|---|---|---|
|
input |
vector |
yes |
N/A |
|
input |
string |
no |
|
|
input |
bool |
no |
|
|
input |
bool |
no |
|
|
input |
integer |
no |
|
|
input |
integer |
no |
|
|
output |
vector |
N/A |
N/A |
Functionality¶
Module can compute the following statistical descriptors from inputVec based on the value of measure:
Minimum (
"min")Maximum (
"max")Range (
"range") : max - minMean (
"mean")Variance (
"var")Standard deviation (
"std")Median (
"median")Entropy (
"entropy"): Entropy of raw data vectorEntropy (
"entropy_hist"): Entropy of a histogramZipf coefficient (
"zipf_coefficient")Circular mean (angle) (
"circ_mean_angle")Circular mean (length) (
circ_mean_length")Circular variance (
circ_var")Circular standard deviation (
circ_std")Circular dispersion (
circ_disp")
If normalizeEntropy=True, the entropy is normalized to yield values between 0 and 1, by dividing by log N with is the maximum entropy for N classes. N can be
given either explicitly by the parameter numberClasses or will be implicitly set as the observed number of different classes. The parameter normalizeToDensity is useful only for
the entropy_hist-measure, which normalises raw bin counts to densities. Circular (directional) statististics are need for transformations such as pitch classes (i.e., derived from some
modulo operation), see https://en.wikipedia.org/wiki/Directional_statistics for more details. For circular statistics, the circ_max parameter is used to map raw values onto the
interval [0,
]. The Zipf coefficient is the (negative) slope of a linear regression on the log-log-plot of rank-ordered frequencies. It is the exponent of a fitted power (Zipf) law
(see https://en.wikipedia.org/wiki/Zipf’s_law).